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In  a recent work Longuet-Higgins & Stewart (1961) have studied the changes in 
wavelength and amplitude of progressive waves of constant frequency as they 
are propagated into regions of surface divergence or convergence. In  the work 
here described the complementary conditions are assumed. Standing waves 
of uniform wavelength, A, exist in an area of uniform surface divergence. Changes 
in amplitude and wavelength are studied. These changes depend on the existence 
of the radiation stress which was discovered by Longuet-Higgins & Stewart 
but the physical interpretation of this stress is simpler for standing than for 
progressive waves. Three different ways of obtaining the same rate of strain in 
the direction of the current caused the amplitude to vary as A-b-, A-2 and A-2, 
respectively. 

Experiments in which free-standing waves were generated in a tank one wave- 
length wide which was then made narrower verified the conclusion that con- 
traction does not alter the periodic character of the waves, even though the ratio 
of amplitude to wavelength becomes so great that they can no longer be treated 
mathematically by the usual linearized approximation. The shape of the profile 
then appears to agree well with calculations of Penney & Price (1952). 

1. Introduction 
In  a recent paper Longuet-Higgins & Stewart (1961) have investigated the 

effect of non-uniform currents on short gravity waves. The physical condition 
assumed to hold was that the waves are generated continuously with a fixed 
frequency at a fixed point in the current. The frequency observed at all other 
fixed points is therefore the same as that of the wave generator, but the wave- 
number varies with position in the current. There is, however, another possible 
physical wave condition which is worth investigating, namely, the effect of a 
non-uniform current on a wave train which already exists, or on waves generated 
by wind action or other cause in the current itself. Most people will have noticed 
the sudden appearance of smooth areas in the disturbed water downstream of 
a lock when the sluice gates are opened. These are where rising turbulent currents 
spread out a t  the surface with horizontal divergence. 

To represent such situations the effect of non-uniform currents with constant 
horizontal divergence on a train of standing waves whose length is constant in 
space but variable in time will be discussed. Such a discussion may be expected 
to be of interest in another connexion. In  discussing the energy changes which 
progressive waves of constant frequency suffer when they enter a non-uniform 
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current, Longuet-Higgins & Stewart (1960, 1961) have shown that it is necessary 
to take account of an interaction between waves and currents which, in the case 
of deep water, is equivalent to endowing them with a ‘radiation’ stress equal to 
BE,, Ep being the wave energy per unit surface area in a progressive wave. The 
expansion of a progressive wave train as it moves into a region of increasing 
current velocity gives rise to a transfer of energy from the wave to the current 
which is identical with that which would occur during expansion at  a rate of 
strain d Uldx under the action of a surface stress +E,. Thoughthis stress S,, = &Ep 
per unit area must necessarily be present it is rather difficult to understand in 
detail the mechanism of its action in progressive waves. On the other hand it 
will be shown that when standing waves are compressed or expanded there exist 
vertical planes at  which there is no horizontal motion due to the waves so that 
vertical sheets could be inserted there without interfering with the motion. 
Changes in the energy of waves when they are compressed or expanded could be 
regarded as being due to the work done by relative motions of the sheets against 
a ‘radiation’ stress, S,,, equal to the force acting on a sheet when there are waves 
only on one side of it. It is therefore possible to calculate A’,, by integrating the 
pressures acting on a vertical sheet a t  the nodes of a standing wave on a current- 
less sea. 

2. Two-dimensional analysis 
A simple irrotational current system in two dimensions which diverges hori- 

zontally is that whose velocity potential is - &(x2 - z2 ) ,  z being vertical and 
positive downwards and x horizontal. The streamlines are rectangular hyper- 
bolas. Consideration of Bernoulli’s equation reveals that this flow cannot have 
a flat free-surface. A small correcting term must be added to the velocity poten- 
tial to enable the stream function @ = 0 to be a surface of constant pressure. 
Take as the velocity potential and stream functions of the steady flow 

(b0 = - & ( X 2 - Z 2 ) + m ( 2 3 - 3 X 2 Z ) ,  $o = CXZ+m(3z2x-X3), ( 1 )  

and consider only the part of the field where the slope of the free surface is so 
small that z/x is small. The equation for the surface, $ = 0, is 

cq, = m(x2- 373, 

T o  = m q c .  

qo = c2x2/2g ( 3 )  

or, if qo /x  is negligible, 

The condition that the pressure there is constant is satisfied if m = c3/2g, so that 

and the field in which this approximation is useful is that for which 

1x1 < gc-2 x (maximum allowable value of dyo/dx) .  

To discuss the effect of this horizontal divergence on a train of standing waves, 
the time t = 0 will be taken as that at which the waves are at their maximum 
elevation and the initial displacement as 

(3) q -To = D cos kx. 
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Wavelength and amplitude will change with time owing to the divergence c ,  
but the wavelength will remain independent of x so that it is justifiable to assume 

(4 
for 7 the form 

7 = 7 0  + f ( t )  cos kx,  

where f and k are functions of t only. An appropriate form for the velocity 
potential is 4 = B e-kz cos kx - &(x2 - z2) + (c3/2g) (z3 - 3x22), 

for which the velocity components are 

( 5 )  

u = Bk e-kz sin kx + cx + ( 3c3/g) xz, 
w = BJce-kzcoskx-cz- (3c3/2g) (z2-x2). 

B is a function of time which must be determined by the condition that 4 is 
compatible with the free surface ( 3 )  and the condition that the pressure is con- 
stant there. The compatibility condition is 

When the second-order terms are neglected the terms which are not time- 
dependent cancel and 

while 

w - u(aq/ak), = Bk cos kx - cf cos kx + cx kf sin kx, ( 7 )  

(8) (aqjat), = ~ C O S  kx - xfk sin kx. 
(7)  and (8) can only be consistent with (6) if 

so that k = k0e-". 

ck = - k ,  

Since the distance between vertical planes of particles which are perpen- 
dicular to x is proportional to eel in the undisturbed current, ( 1 0 )  shows that in 
the disturbed flow particles which at  any instant are situated in a nodal plane 
remain in a nodal plane. The compatibility condition is 

f+cf = Bk. ( 1 1 )  

The pressure condition at the free surface is 

4 - +(u2 + w2) + g(q, +f cos kx)  = 0 ,  

and, retaining only first-order terms, this reduces to 

B cos kx - Bxh sin kx - Bxck sin kx + fg COB kx = 0. 

Since k = - ck ,  ( 1 2 )  becomes 

Eliminating B between ( 1 1 )  and ( 1 3 ) ,  

B +  fg = 0. 

f-t 2cf+c2f+kfg = 0. 

Writing ct = T - T ~ ,  where T~ = In (c2/gko), ( 1 4 )  becomes 
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and writing e+ = w so that w = (gko/c2) ecCt, (15) becomes 

This equation is a particular case of a more general one which is quoted, for 
instance, in the text of Jahnke & Emde’s Tables (1945) ; it  has a solution 

f = wJ0(2w4). (17 )  

The equation to the free surface at  any time is therefore 

Here a. is the frequency of waves of length 2n/ko and D is the initial amplitude 
when t = 0. It will be noticed that a single curve in which wJ0(2w9) is plotted 
against -1nw = T represents the whole range of values of (y-yo)/D for all 
possible initial values of k and any value of c positive or negative. This curve is 
shown in figure 1. On a diverging current the changing amplitude is represented 
by a point on the curve which moves from left to right, while that on a converging 
current (c  negative) is represented by a point which moves in the opposite 
direction. 

The availability of the curve of figure 1 for representing the changes in 
standing waves on a diverging current is limited to the time during which the 
wavelength is small compared with the dimensions of the area in which the 
equations are valid approximations; thus if the maximum allowable value of 
dvO/dz  is e, the maximum linear dimension of the wave in which one wavelength 
covers the whole field is h = 2ge/c2 so that 2n/k must be less than 2gs/c2. Since 
w = gk/c2 = 2ng/c2h, the lowest meaningful value of w in (17) is ~ / e .  Even for 
a value of e as high as 26, n/e  is 1On and the argument of the Bessel function in 
(17),  namely 2w9, is about 11. At this value the Bessel function in (17) is close to 
its asymptotic approximation so that 

wJo( 2w4) N n--*w% cos (2w6 - in). (19) 

It appears therefore that a standing wave in an expanding or contracting flow 
has an amplitude proportional to ki, i.e. 

anipl. K h-i. (20) 

This may be compared with an analogous result for progressive waves given in 
Longuet-Higgins & Stewart (1961), equation (4.9). 

3. Radiation stress in standing waves 
Equation (10) shows that the wavelengths expand a t  the same rate as the 

distance between particles on wave crests, in other words vertical planes through 
wave crests always contain the same fluid. The rate a t  which the energy contained 
in one wavelength, A, is transferred to the mean flow can therefore be calculated 
in two ways. 

(i) The result (20)  that the amplitude is proportional to k% makes it possible 
to calculate the change in energy contained in one wavelength as h changes and 
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since the only way in which this change can occur is by means of a force acting 
on the vertical planes at  neighbouring crests which are separating a t  rate ch 
this force must be equal to (rate of change of energy per wave1ength)lhc. 

(ii) The second method is to integrate the pressure over vertical planes through 
the crests of standing waves when there is no diverging current. 

The same result is obtained by both methods. The advantage of carrying out 
both calculations is that a simple conception of the action of radiative stress is 
obtained. The existence of radiative stress in progressive waves was discovered, 

7 =-lno 

FIGURE 1. Changes in amplitude of standing wave on a 
contracting or expanding current. 

or a t  any rate first effectively understood by Longuet-Higgins & Stewart (1960, 
1961). Their discussion is more general than that of the present work but the 
conception of radiation stress is simpler for standing than for progressive waves. 

The energy of a standing wave of length h and amplitude a is Esh = ipgazh. 
If the wavelength changes from h to h + d h  and the amplitude from a to a +da, 

dE, d n  d h  
_ _ _ -  - 2-+- .  
Es a h  

The result of the direct calculation of the relationship between h and a was that 
a cc h-% so that 

The loss in energy per wavelength hdE, during an extension d h  must be due to 
a radiation stress S,, where S,,dh = -hdEs and using (22), 

(23) 

dala = - $dh/h and dEJE, = -+dh/h. (22 )  

- 1.E - I. 
sx - 2 s - swa2. 
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The energy per unit area in a region where a progressive wave is reflected at a 
vertical plane barrier is twice the energy per unit area of the incident wave; 
(23) shows that the radiative stress in a standing wave is also twice that of the 
incident progressive wave. 

4. Axisymmetric diverging currents 
The smooth mushroom-like areas in the stream below an emptying lock seem 

to be due to upwelling which spreads out equally in all directions. The same kind 
of analysis as that used in the two-dimensional case might be used as a model for 
this situation if the basic current flow is represented by 

#o = - &(39 + y2 - 227, (24) 

where y is the co-ordinate parallel to the wave fronts. In  order that the free 
surface may be one of constant pressure, a small corrective term must be added 
to Qo which may be taken as Q(c3/g)  (23 -$z(x2 + y2),), and the free surface is then 

( 2 5 )  70 = *(cZ/g) (x2 +y2). 

A small error will arise with the axisymmetric current which did not affect the 
two-dimensional case. The correcting term which is necessary to satisfy the 
pressure condition causes initially straight wave crests to be convected into 
curves. If this second-order effect can be neglected analysis similar to that for 
the two-dimensional case can be made. Taking 

4 = B e-kz cos kx - &(xz + y2 - 3z2) + Q(c3/g) {z3 -$z(x2 + y2)}, (W 
and r/ = ?lo + f cos kx, (27) 

it is found that ck = - &  as in (9) but the equation of compatibility analogous 

f + 2 c f  = Bk to (11) is 

and the surface pressure condition is, as before, 

B + f g  = 0. 

f+ 3cf+ 2c2f+kfg = 0. 
Eliminating B,  

Making the same transformation as before, the equation analogous to (16) is 

a solution is 
so that the asymptotic value is 

f = wtJ1(2w*) 

f = 7i-+w% cos (2w-i - &r). (29) 

a cc A-8. (30) 

The wave height, a, is therefore proportional to h-9, or 

This result may be used to calculate the radiation stress (if any) acting on 
vertical planes perpendicular to the wave crests, for, with this type of current, 
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a portion of the surface which was originally square and bounded on two sides 
by wave crests will remain square so that the energy contained in it is 

A2E - LA2 
s - 4 g P 2 .  

Expansion from sides of length A to h+dh changes the energy by an amount 
E,h2(3da/a+2dh/h). This change must be attributed to stresses S,, and S,, 
acting on the sides of the square which does work equal to (S,, + Ssg) hdh during 
the expansion. And using (30), da/a = -%dh/h so that 

(S,,+S,,)hdh+E,h2(-Bdh/h) = 0,  or Ss2+Ss, = BE,, 

and since we already know that S,, = +E,, this argument shows that S,, = 0. 
This result can also be obtained by integrating pressures over a vertical plane 
perpendicular to the wave crests when there is no expansion retaining terms of 
the second order of small quantities. 

5. Lateral contraction or expansion without upwelling 

parallel to x = 0 the appropriate choice for #o is 
If the basic flow is one in which the motion at  all depths is confined to planes 

= - $c(xZ- Y2) (31) 

and the undisturbed free surface is again ?lo = (c2/2g) (x2+y2). Using the same 
symbols as in the two previous cases for the wave disturbance, it is found that 
the equation of compatibility analogous to (1  1)  is f = Bk and the pressure 
equation (13), namely B+ f g  = 0, is unchanged. Making the same transforma- 
tions as before the equation for f is 

and a solution is 
f = 0:Jl(2w9; 

(32) 

(33) 

using the asymptotic approximation the amplitude a is proportional to w f ,  i.e. 
to h-i, This result can be compared with $ 5  of Longuet-Higgins & Stewart 
(1961). It can be verified that i t  also leads to the conclusion that S,  = &E and 
s,, = 0. 

6. Effect of currents expanding laterally but not longitudinally 
Here the appropriate assumptions for # and 7 are 

$ = B eckc cos kx - ic(y2- 22) and 7 - 7o = f ( t )  cos kx (34) 

and the compatibility condition is 

while the pressure condition is 

so that f + c f + k g f  = 0 

and 

f = Bk-Cf, 

B + f g  = 0, 

f = B e-tct cos (gk - &2)& t .  (35) 
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A rectangle of length h and initial breadth b has breadth bec1 at time t. The 
energy contained in it is hb ect E, and since E, = ipga2 = $pgD2 e-C1 the energy 
in the area remains constant. Since only the barriers at right angles to the wave 
crests move, the stress S,, must therefore be zero. 

7. Force exerted by standing waves on a vertical barrier 
Waves of small amplitude exert a fluctuating pressure on a vertical wall and 

the resultant fluctuating force can be divided into two parts: (i) the steady 
force due to the hydrostatic pressure of fluid whose surface is at  the mean level 
of the standing waves and (ii) the fluctuating part which is the difference between 
the total force and the steady part defined in (i). If only the first order of small 
quantities is considered the mean value of the fluctuating part is zero and the 
force acting on a vertical barrier extending downwards at  a wave crest from the 
surface to such a depth that the fluctuations in pressure on it are negligible is 
also zero. To calculate the force on a vertical barrier at  one side of which there 
are standing waves, it is necessary to carry the ana.lysis to the second order of 
small quantities, 

The mechanics of standing waves of finite amplitude has been studied by 
Penney & Price (1951) who showed that standing waves in which all the particles 
are at rest twice in every period can exist. They showed that there is a single 
series of such waves depending on the value of a non-dimensional number A 
and they expressed the velocity potential and displacement of the surface in a 
Fourier series containing submultiples of the wavelength. The coefficient of 
each term of this series was a function of time which itself was also expressed as 
a Fourier series of submultiples of the period. They developed the coefficients 
of the terms in these functions of time in powers of a single arbitrary number A 
which determined the amplitude of the waves. The analysis was very complicated 
and was carried up to terms involving A5. For the present purpose it is only 
necessary t o  include terms up to A2. Penney & Price showed that there are no 
terms in Q of order A2. The appropriate expressions for Q and y are 

Q = X(t) + A a k 2  e-kz cos kx  cos at, (36) 

(37) 
These equations satisfy the compatibility condition (6) when terms of higher 
order than A2 are neglected. The pressure is then given by 

(38) 

At  the surface where z = y, the condition p = 0 is satisfied when terms of higher 
degree than A 2  are neglected, provided 

y = Ak-I cos kx  sin at - cos 2kx sin2 at. 

p / p  = x ( t )  - eckZ cos kx sin at  - +A2a2k-2e-2ka cos2 at + gz. 

a2 = gk and i ( t )  = &A2gk-l cos 2at. (39) 

(40) 
This variation in pressure is independent of the depth and is the double-frequency 
pressure oscillation extending to the bottom of the sea to which several authors 
have called attention. 

The amplitude, a,  of the standing wave is, to the first order, Ak-l so that 

p$(t) = &gpa2k cos 2at. 
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parallel to the wave crests at x = 0 is 
The force a t  any instant exerted by the waves on a vertical barrier of depth D 

The pressure a t  x = 0 is 

&(t) - aa2k-1 e-kz sin ut - ga2a2 e--2ks cos u t +gz } .  (42) 

Integrating (42) the total force to depth D, which is assumed to be much greater 
than a wavelength, is 

p(&Dga2 cos 2at - gak-I sin ut + ga2(sin2 at - t cos2 at - 4 sin2 at)}. (43) 

The mean value of this force is igpa2. Comparing this with (23) the mean force 
of the waves on a vertical wall is equal to $E,. 

The force per wavelength acting on a vertical barrier placed perpendicular to 
the wave crests can also be calculated, since no fluid crosses these planes. When 
this is done it is found that the mean value of the force attributable to the term 
- A c ~ ~ k - ~  e-kz cos kx sin at in (38) is $gpa2h while those due to the last two terms 
- 2  1A2u2k-2e-2kzcos2at and gz in (38) are each - &gpa2h so that the total mean 
force on barriers perpendicular to the wave fronts is zero. 

8. Experiments on standing waves 
The conclusion reached in 5 2,  that slow horizontal contraction alters the wave- 

length of a simple-harmonic wave of small amplitude but preserves its simple- 
harmonic character, seemed worth verifying experimentally. A tank 102 cm 
deep, sketched on figure 2, was constructed out of sheet Perspex so that it had 
two parallel walls and two which converged towards the bottom. The parallel 
walls were 12 ern apart while the converging walls were 25.4 cm apart; a t  the top 
and 12cm at the bottom. In the bottom was a large valve A (figure 2 )  which 
could empty the tank to a mark C in about 5 sec when raised by the lever B. The 
waves were produced by causing a narrow wedge D in the middle of the top of 
the tank to oscillate vertically. 

A 16 mm cine-camera operated a t  69 to 73 frames per second could be placed 
in two positions so that it could photograph at the top or a t  levels near the 
marks C and E. 

Since the seatings for the camera were fixed at  the same distance from the tank 
it was possible to take a short length of film covering a few complete periods in 
the upper position and then move the camera to the lower position and take the 
surface when it reached the lower position. A disadvantage of this method was 
that drops were liable to fall off the wave-maker and disturb the wave. This was 
prevented by installing a trough F (figure 2) which started to travel down a 
guide a.s soon as the valve A was raised. It stopped a t  position G where it could 
catch the drops. It can be seen at  the right-hand side of the top of the photographs 
(figures 3 and 4 (plates 1 and 2)). 

The frames chosen for reproduction in figures 3 and 4 (plates 1 and a ) ,  were 
those at  which the wave crest was a t  its maximum height during an oscillation. 
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It was found by counting frames between successive maxima that, within the 
limits of accuracy obtainable by this method, the period was indistinguishable 
from (2nZ/g)+, the period for small oscillations when the length I was taken as that 
of the free surface at the time the photograph was taken. 

FIGURE 2. Converging tank in which the free-surface length was 
contracted by lowering the water level. 

The theoretical conclusion described by equation (10) that, when a standing 
wave is compressed between rigid planes at its nodes, its period will alter so 
that it remains a simple wave is therefore verified, but the decrement due to 
viscosity was so great that it was impossible to verify the predicted change in 
amplitude. 

Figure 3 (plate 1) shows a case where the initial amplitude is small and the 
lateral compression of the wave produces a sm.all increase in absolute amplitude 
in spite of the decrement due to viscosity. The decrement in the 15 or more 
oscillations which occurred while the water level was falling was never so great 
that the ratio of wave height to wavelength decreased. It always increased 
considerably. 

If h is the maximum height above the mean level and d the maximum depth 
below it, the shape of a periodic wave of finite amplitude depends only on (h  + d)/Z. 
This shape has been calculated approximately by Penney & Price (1952) for a 
series of values of a non-dimensional number A. For small values of A 
(h+d)/Z = A/n and in Penney & Price's approximation the highest wave which 
has a crest of 90" corresponds with A = 0.592 and (h  + d)/E = 0-128. 
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and the fluid is instantaneously a t  rest is 
Their expression for the shape of the wave when its crest is at its highest point 

%TY/E = ( A  + &A3- +&A5) cos (Znx/Z) + (+A2-&?%A4) cos (4nx/Z) 

+ (&43-gg&4.5) cos (6nxll) +$A4cos (87rx/Z) +3$%A5cos (lOnx/l) .  (44) 

When A = 0.592 this wave has downward acceleration equal to gravity a t  its 
highest point and it should have a pointed crest but the Fourier-series approxi- 
mation with a finite number of terms cannot represent this. The calculated form 
for A = 0.592 is shown in figure 4 (plate 3), and the estimated form at the top 
of the pointed crest is shown as a broken line (Taylor 1953). The highest value of 
(h+d)/Z observed in the present experiments was that for the wave shown in 
figure 4. At Z = 14cm, the value of h+d was 2.2cm so that (h+d)/E = 0.16. To 
compare this wave with Penney & Price’s calculation the profile found from (44) 
for A = 0.5 was drawn. This curve is shown a t  the bottom of figure 4. The corre- 
sponding value of (h+d) / l  was 0-177. It will be seen that the form of the profiles 
revealed by the photographs in figure 4 is very similar to that calculated for a 
wave with nearly the same value of (h  + d)/Z. 

The experiment seems to indicate that if the viscous decay had been less, slow 
compression would permit standing waves to remain periodic even when their 
amplitude could no longer be regarded as small. It would be interesting to use 
a larger wave tank to find out whether it is possible to compress waves till a 
pointed crest is attained. 
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FI(:UILM 3. ‘J‘op frarrie: wave generated a t  length 24.1 em; middle frame: wave at masi- 
iiiiiin amplitude after the length had contracted t,o 28.0 cm; lower frame: v7ave at 
I = 15.5 em. 

TAYLOR (Facing p .  192) 
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FIGURE 4. Top: wave generated a t  I = 24.0 cm. Middle: two consecutive frames when 
I = 14.0 cm. Below: calculated wave shapes; the shape for A = 0.50 can be compared 
with the photographs above ; the crests seem rather sharper but otherwise comparable. 

TAYLOR 


